

 $\arcsin\frac{\sqrt{2}}{2} = \frac{71}{4}$

 $\arctan(-\sqrt{3}) = -\frac{11}{3}$

 $\arccos(\cos\frac{2\pi}{3}) = \frac{2\pi}{3}$

 $\arctan(\tan\frac{3\pi}{4}) = -\frac{\sqrt{1}}{4}$

4==生生

The range of $f(x) = \arccos x$ is [0, 71]

The domain of $f(x) = \tan x$ is $\times \neq \frac{\pi}{2} + \eta \pi$, $n \in \mathbb{Z}$

The equations of the asymptotes of $f(x) = \arctan x$ are

 $\cos^{-1}(-\frac{\sqrt{3}}{2}) = \frac{571}{6}$

 $\sin(\sin^{-1}\frac{3}{2}) = \square \sqrt{3}$

 $\tan(\tan^{-1}7) = 7$

The domain of $f(x) = \sin^{-1} x$ is

The range of $f(x) = \sec x$ is $(-\infty, -1] \cup [1, \infty)$

The equations of the asymptotes of $f(x) = \csc x$ are

As
$$x \to \frac{\pi}{2}^+$$
, sec $x \to -\infty$

Graph 2 periods of the function $y = -4\cos(\frac{4}{3}x + \frac{11\pi}{6}) - 3$.

SCORE: / 16 PTS

Find the coordinates of the 9 points discussed in lecture, corresponding to 2 complete periods, starting at the phase shift.

Label all x – and y – values for the 9 points on the appropriate axes, using a consistent scale for each axis.

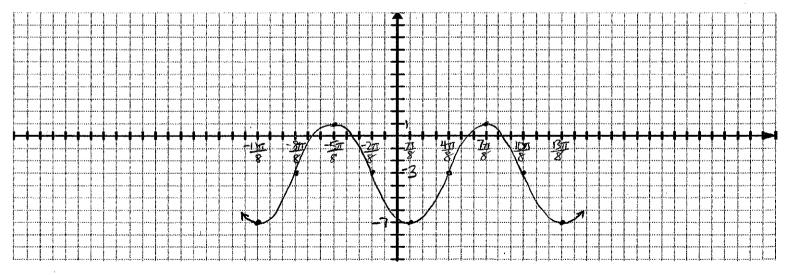
$$MID = -3$$

 $AMP = |-4| = 4$
 $MAX = -3+4 = 1$

$$MIN = -3-4 = -7$$

POINTS:
$$(-\frac{1}{8}, -7)$$

POINTS:


$$(\frac{-3\pi}{8}, \frac{-3}{3})$$

$$(\frac{-5\pi}{2}, \underline{1})$$

$$(\frac{-2\pi}{8},\frac{-}{2})$$

$$(\underline{\cancel{\$}},\underline{-3}) \quad (\underline{\cancel{\$}},\underline{-1}) \quad (\underline{\cancel{\$}},\underline{-3})$$

$$(\frac{13\pi}{8}, \underline{7})$$

[b]

SCORE:

[a]
$$\csc(\arctan \frac{2}{x})$$
, where $x > 0$

an
$$\theta = \frac{2}{x}$$

$$\sqrt{x^{2}+4^{2}}$$

$$\sqrt{2}$$

$$\sqrt{3}$$

$$\sqrt{3}$$

$$\sqrt{4}$$

$$\sqrt{2}$$

$$\sqrt{3}$$

$$\sqrt{4}$$

$$\sqrt{2}$$

$$\sqrt{3}$$

$$\sqrt{4}$$

$$\sqrt{2}$$

$$\sqrt{3}$$

$$\sqrt{4}$$

$$\sqrt$$

$$\tan(\cos^{-1}(-\frac{5}{6})) = \tan \theta = -\frac{11}{5}$$

$$\theta = \cos^{-1}(-\frac{5}{6})$$

Due to a malfunction, the temperature in a lab freezer has been behaving like a sinusoidal function. At 12:07pm, the temperature reached a low of $31.8^{\circ}F$, then increased until it reached a high of $34.2^{\circ}F$ at 12:16pm.

$$MID = \frac{34.2 + 31.8}{2} = 33$$
 34.27

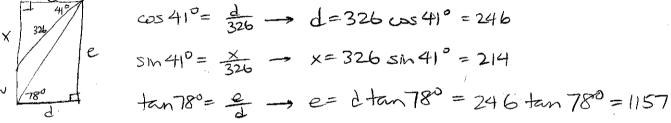
[b]

$$MID = \frac{54.2 + 31.8}{2} = 33$$

$$-1.2 \cos \frac{\pi}{4} (t - 7) + 33$$

AMP =
$$\frac{3^24.2-31.8}{2} = 1.2$$
 31.8 $\frac{1}{7}$ 16

Find the temperature in the freezer at 1pm. (Round your answer to 1 decimal point.)


 $-1.2 \cos \frac{\pi}{4}(60-7) + 33 = 31.9^{\circ}$

SCORE: / 14 PTS

/ 16 PTS

SCORE:

From the roof of the east building, the angle of depression to the roof of the west building is 41°.

[b] Find the angle of depression from the roof of the west building to the base of the east building. Round your answer to the nearest integer.